Digital convergence of agriculture and industry 4.0: opportunities and organisation interfaces

Vitaliy A. Omelyanenko

Abstract


This paper explores the role of digital-based high-tech agriculture as a central driver of innovation and sustainability in the agro-industrial complex. Emphasis is placed on the strategic importance of technology transfer, foresight-based planning and data-driven solutions to improve productivity and enhance resilience. The findings reinforce the notion that high-tech agriculture is not an isolated phenomenon but an integral part of a broader digitalized industrial economy. This paper presents a systems-based digitally supported approach for the transfer and commercialization of agricultural technologies.

Keywords


agriculture, technology transfer, ICT, innovation network, agri-tech innovations

Full Text:

PDF
PDF

References


Pidorycheva, I. Yu., & Bash, A. S. (2024). Smart specialization of industrial regions of Ukraine: organizational and economic support. Econ. promisl., 2 (106), 5—28. http://doi.org/10.15407/econindustry2024.02.005  [in Ukrainian].

Aguilar-Virgen, Q., Castañeda-González, M., Marquez-Benavides, L., Gonzalez-Vazquez, J., & Taboada-González, P.(2021). Concurrent Engineering Model for the Implementation of New Products in the Textile Industry: A Case Study. Applied Sciences, 11 (8), 3584. https://doi.org/10.3390/app11083584

Alston, J. M., & Pardey, P. G. (2014). Agriculture in the global economy. J. Econ. Perspect., 28 (1), 121—146. https://doi.org/10.1257/jep.28.1.121

Badiane, O. (2014). Agriculture and structural transformation in Africa. In Falcon, W. P. & Naylor, R. L. (Eds.). Frontiers in Food Policy: Perspectives on Sub-Saharan Africa. The Center on Food Security and the Environment, Stanford University: Stanford, CA, USA. http://fsi.stanford.edu/publications/frontiers_in_food_policy_perspectives_on_subsaharan_africa

Bietresato, M., Selmo, F., & Mazzetto, F. (2020, May 20—21). Concurrent engineering approach in design of test equipment for detecting farm tractor mechanical performances: Application to development of hub-adapter. Engineering for rural development. Jelgava. https://www.iitf.lbtu.lv/conference/proceedings2020/Papers/TF389.pdf

Brookes, N., & Blackhouse, C. (1996). Concurrent engineering — what’s working where. The Design Council. London: Gower Publishing, Ltd. https://books.google.com.ua/books/about/Concurrent_Engineering.html?id=QzRhe0MM_EkC&redir_esc=y

Brookes, N., & Blackhouse, C. (1998). Understanding concurrent engineering implementation: a case study approach. International Journal of Production Research, 36, 3035—3054. http://dx.doi.org/10.1080/002075498192274

ILRI (2008). Climate, Livestock and Poverty: Challenges at the Interface. International  Livestock Research Institute. Corporate Report 2008—09. ILRI, Nairobi, Kenya. https://www.ilri.org/knowledge/publications/ilri-corporate-report-2008-9-climate-livestock-and-poverty-challenges

Stjepandić, J., Wognum, P. M., & Verhagen, W. J. (2015). Concurrent Engineering in the 21st Century. Springer. https://link.springer.com/book/10.1007/978-3-319-13776-6

Deshpande, A. (2018). Concurrent Engineering, Knowledge Management and Product Innovation. J. Oper. Strateg.

Plan., 1 (2), 204—231. https://doi.org/10.1177/2516600X18816204

dos Reis, Â. V., Medeiros, F. A., Fernando, M., & et al. (2020). Technological trends in digital agriculture and their impact on agricultural machinery development practices. Revista Ciência Agronômica, 51, Special Agriculture 4.0, e20207740. https://doi.org/10.5935/1806-6690.20200093

Dror, I. (2016, May 17—19). From technology transfer (TT) to agricultural innovation systems (AIS). SEARCA Forum-workshop on Platforms, Rural Advisory Services and Knowledge Management: Towards Inclusive and Sustainable Agricultural and Rural Development. Los Banos. https://cgspace.cgiar.org/server/api/core/bitstreams/cf481b78-d117-44c9-a6d5-b5a5b4b780c1/content

Facco, G., & et al. (2017). Cooperation of functional areas in agricultural machinery development process. Product: Management & Development, 15 (1), 1—7. http://dx.doi.org/10.4322/pmd.2017.007

Jha, G. K., Ranjan, P., & Gaur, M. (2020). A machine learning approach to recommend suitable crops and fertilizers for agriculture. In S. Na. Mohanty, J. M. Chatterjee, S. Jain, A. A. Elngar, P. Gupta (Eds.). Recommender System with Machine Learning and Artificial Intelligence: Practical Tools and Applications in Medical, Agricultural and Other Industries (pp. 89—99). John Wiley & Sons: Hoboken, NJ, USA. https://doi.org/10.1002/9781119711582.ch5

Klerkx, L., Van M., & Leeuwis, C. (2012). Evolution of systems approaches to agricultural innovation: Concepts, analysis and interventions. In I. Darnhofer, D. Gibbon, & B. Dedieu (Eds.). Farming Systems Research into the 21st Century: The New Dynamic (pp. 457—483). Springer, Netherlands. https://doi.org/10.1007/978-94-007-4503-2_20

Méndez-Zambrano, P. V., Tierra Pérez, L. P., Ureta Valdez, R. E., & Flores Orozco, Á. P. (2023). Technological Innovations for Agricultural Production from an Environmental Perspective: A Review. Sustainability, 15 (22), 16100. https://doi.org/10.3390/su152216100

Mgendi, G., Shiping, M., & Xiang, C. (2019). A Review of Agricultural Technology Transfer in Africa: Lessons from Japan and China Case Projects in Tanzania and Kenya. Sustainability, 11 (23), 6598. DOI: https://doi.org/10.3390/su11236598

Omelianenko, O., Omelyanenko, V., & Pidorycheva, I. Data-driven planning of regional development and inclusive industrialization. Data economy: challenges and opportunities for business and government: monograph (pp. 277—288). Praha: OKTAN PRINT. https://doi.org/10.46489/DECAO-25-03

Prasad, B. (2018). Collaborative Design and Manufacturing Research. Concurr. Eng., 26, 211—214. https://doi.org/10.1177/1063293X18793692

Prokopenko, O., Järvis, M., Omelyanenko, V., Maslov, A., & Lopes, H. (2025). The Convergence of IoT, Cyber-Physical Systems and Mechatronics in Industry 4.0 Digitalization. In J., Machado, J., Trojanowska, K., Antosz, C. P., Leão, L., Knapcikova, & A., Sover (Eds). Innovations in Industrial Engineering IV. ICIENG 2025. Lecture Notes in Mechanical Engineering (pp. 48—65). Springer, Cham. https://doi.org/10.1007/978-3-031-94484-0_5

Rihar, L., & Kušar, J. (2021). Implementing Concurrent Engineering and QFD Method to Achieve Realization of Sustainable Project. Sustainability, 13 (3), 1091. https://doi.org/10.3390/su13031091

Shevchenko, I., Omelyanenko, V., Chuprun, Y., Ippolitova, I., & Shchokin, R. (2025). Advancing the Knowledge Economy: The Impact of Innovations and Human Capital. Journal of Posthumanism, 5 (1), 1270—1283. https://doi.org/10.63332/joph.v5i1.664

Thankachan, T., Bhasi, M., & Madhu, G. (2010). Application of concurrent engineering in manufacturing industry. International Journal of Computer Integrated Manufacturing, 23 (5), 425—440. https://doi.org/10.1080/09511921003643152

FAO (2017). The Future of Food and Agriculture: Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy. https://doi.org/10.4060/cc7724en

FAO (2023). The State of Food and Agriculture 2023. FAO: Rome, Italy. https://openknowledge.fao.org/items/1516eb79-8b43-400e-b3cb-130fd70853b0

Thorat, T., Patle, B. K., & Kashyap, S. K. (2023). Intelligent insecticide and fertilizer recommendation system based on TPF-CNN for smart farming. Smart Agric. Technol, 3, 100114. https://doi.org/10.1016/j.atech.2022.100114

Tirupathi, P., & Niranjan, P. (2022). An optimal strategy for sustainable IoT device placements for agriculture. Concurrent Engineering. https://doi.org/10.1177/1063293X221131885

Vyshnevskyi, O. S., Anufriiev, M. Yu., Bozhyk, M. S., & Gulchuk, T. O. (2024). Artificial intelligence as a core of the new industrial revolution: prospects and limitations. Econ. promisl., 3 (107), рр. 5—21. http://doi.org/10.15407/econindustry2024.03.005




DOI: https://doi.org/10.15407/econindustry2025.03.023

Refbacks

  • There are currently no refbacks.